Contact
Jonathan Arias, PhD, Researcher Professor
LSC-EMBL Institute for Genome Editing Technologies
Vilnius University Life Science Center
7 Saulėtekio Ave, LT-10257 Vilnius, Lithuania
P: +370 52398245
Jonathan Arias, PhD, Researcher Professor
LSC-EMBL Institute for Genome Editing Technologies
Vilnius University Life Science Center
7 Saulėtekio Ave, LT-10257 Vilnius, Lithuania
P: +370 52398245
2025-10-06 Arias lab is co-organizing the doctoral course Advanced Therapeutic Medicinal Products (ATMPs) Enabled by Regenerative Medicine and Gene Editing Technologies" Register here
2025-07-22 Arias lab participates at the 6th Central European Biomedical Congress (CEBC) "Integrating Neuropharmacology and bioinformatic with AI" 🇵🇱 Join us ✅.
2025-07-03 Arias lab co-organizes Human organoids: model systems for human biology and medicine, in collaboration with 🇫🇷Université Montpellier, 🇸🇪Karolinska Institutet, 🇪🇸Universitat de Barcelona, this summer 2025 . Apply here
2023-09-01 Two Postdoctoral fellowships on Gene Editing and Stem cells in our lab. Apply here. For more info feel free to write us.
2023-02-15 Two PhD projects available in our lab. Apply to join the Biochemistry and Biology doctoral program here. For more info feel free to write us.
2023-02-01 Postdoctoral project available in our lab. Apply to join the Biology doctoral program here. For more info feel free to write us (project).
2023-04-25 Seminar of Prof. Hayshi from RIKEN (iPS Cell Advanced Characterization and Development Team at Bioresource Research). More info here
For cell lines and plasmids from our publications please contact us at
You can also obtain our published plasmids through Addgene Arias lab addgene
Lecture material from our course "Advanced Therapeutics Medicinal Products & Regenerative Medicine" will be available here at the start of the semester.
Our ORCID 0000-0002-3997-2355
2025
Daniel Naumovas, Barbara Rojas-Araya, Catalina M. Polanco, Victor Andrade, Rita Čekauskienė, Beatričė Valatkaitė-Rakštienė, Inga Laurinaitytė, Artūras Jakubauskas, Mindaugas Stoškus, Laimonas Griškevičius, Ivan Nalvarte, Jose Inzunza, Daiva Baltriukienė, Jonathan Arias (2025). "Identification of HLA-A, HLA-B, and HLA-C triple homozygous and double homozygous donors: a path toward synthetic superdonor advanced therapeutic medicinal products"
Front. Immunol. doi:10.3389/fimmu.2025.1626787. article
Catalina M. Polanco, Jose Inzunza, Ivan Nalvarte, Jonathan Arias (2025). "Genome Editing and Human-Induced Pluripotent Stem Cells Facilitate Parkinson’s Disease Modeling"
Stem Cell Biology and Regenerative Medicine. doi:10.1007/978-3-031-94101-6_3. article
Jose Inzunza, Aphrodite Demetriou, Jonathan Arias, Ivan Nalvarte (2025). "Stem Cell-Derived 3D Models to Study Alzheimer’s Disease"
Stem Cell Biology and Regenerative Medicine. doi:10.1007/978-3-031-94101-6_5. article
Aistė Petruškevičiūtė, Ugnė Šimuliūnaitė, Catalina M. Polanco, Barbara Rojas, Simonas Kuras, Beatričė Valatkaitė-Rakštienė, Rimvydas Norvilas, Akshay Kumar Vijaya, Urtė Neniškytė, Artūras Jakubauskas, Aurelijus Burokas, Ivan Nalvarte, Jose Inzunza, Daniel Naumovas, Mindaugas Stoškus, Laimonas Griškevičius, Daiva Baltriukienė, Jonathan Arias. (2025). "Generation of a genetically encoded voltage indicator MARINA reporter human iPS cell line using Cas9 (VULSCi002-A-2)"
Stem Cell Research. doi:10.1016/j.scr.2024.103628. article
2021
Jarazo J., Barmpa K., Modamio J., Saraiva C., Sabaté S, Rosety I., Griesbeck A., Skwirblies F., Zaffaroni G., Smits L., Su J., Arias J., Walter J., Gomez G., Monzel A., Qing X., Vitali A., Cruciani G, Boussaad I., Brunelli F., Jäger C., Rakovic A., Li W., Yuan L., Berger E., Arena G. , Bolognin S., Schmidt R., Schröder C., Antony P., Klein C., Krüger R., Seibler P., Schwamborn J. (2021). "Parkinson's Disease Phenotypes in Patient Neuronal Cultures and Brain Organoids Improved by 2-Hydroxypropyl-β-Cyclodextrin Treatment"
Mov Disord. doi:10.1002/mds.28810. article
Arias J., Yu J., Varshney M., Inzunza J., Nalvarte I. (2021). "HSC and iPS cell‐derived CAR‐NK cells as reliable cell‐based therapy solutions". Stem cell Tra Med. doi:10.1002/sctm.20-0459. article
2020
Inzunza J., Arias J., Segura-Aguilar J., Nalvarte I., Varshney M. (2020). "Generation of nonviral integration-free human iPS cell line KISCOi001-A from normal human fibroblasts, under defined xeno-free and feeder-free conditions." Stem Cell Res. doi:10.1016/j.scr.2021.102193. article
Barbuti P., Antony P., Santos B., Massart F., Cruciani G., Dording C., Arias J., Schwamborn J., Krüger R. (2020). "Using High-Content Screening to Generate Single-Cell Gene-Corrected Patient-Derived iPS Clones Reveals Excess alpha-synuclein with Familial Parkinson’s Disease Point Mutation A30P". Cells. doi:10.3390/cells9092065 article
2019
Gomez-Giro, G., Arias J., Schöler, Hans, et al. (2019). "Synapse alterations precede neuronal damage and storage pathology in a human cerebral organoid model of CLN3-juvenile neuronal ceroid lipofuscinosis." Acta Neuropathol Commun. doi:10.1186/s40478-019-0871-7. article
Arias J. et al. (2019). "Generation of human induced pluripotent stem cell lines from patients with selective IgA deficiency." Stem Cell Res. doi:10.1016/j.scr.2019.101613. article
Arias J. et al. (2019). "Generation of a human induced pluripotent stem cell line (PHAi003) from a primary immunodeficient patient with CD70 mutation." Stem Cell Res. doi:10.1016/j.scr.2019.101612. article
Nie M., Du L., Zhang B., Ren W., Joung J., Ye X., Arias J., Shi X., Liu D., Wu K., Zhang F., et al. Essentiality of CREBBP in EP300 truncated B-cell lymphoma revealed by genome-wide CRISPR Cas9 screen. Biorxiv. (2019). doi:10.1101/746594 article
2018
Arias J. et al., (2018.) "Automated high-throughput high-content autophagy and mitophagy phenotyping in Parkinson's disease." Sci Rep doi:10.1101/412957. article
Walter, J., Arias, J. et al. (2018). "Neural stem cells of Parkinson's Disease patients exhibit aberrant mitochondrial morphology and functionality." Stem Cell Reports. doi:10.1016/j.stemcr.2019.03.004. article
2017
Arias J., Schöler, Hans, et al., (2017). "FACS-assisted CRISPR Cas9 genome editing facilitates Parkinson's disease modeling." Stem Cell Reports. doi:10.1016/j.stemcr.2017.08.026. article
Qing X., Arias J., et al. (2017). "CRISPR/Cas9 and piggyBac-mediated footprint-free LRRK2- G2019S knock-in reveals neuronal complexity phenotypes and alpha-synuclein modulation in dopaminergic neurons." Stem Cell Res. doi:10.1016/j.scr.2017.08.013. article
Our current research includes three arching themes:
I. Deterministic cell therapies enabled by iPS cells and CRISPR nucleases.
1. Engineered iPS cell-based therapies.
II. Genome wide modulation of human cell systems enabled by CRISPR nucleases.
1. Creation of cell therapies enabled by CRISPR nucleases and iPS cells (P-PAD-22-76) funded by RCL.
III. Gain of function cell therapies enabled by iPS cells and CRISPR nucleases.
1. CRISPR-Cas9 enabled cell-based therapeutics.
2. Advanced Nuclease-enabled Regenerative Medicine Therapies against cancer (NRMT - P-MIP-23-1) funded by RCL.
|
![]() |
Jonathan Arias, PhD, Group Leader |
![]() |
Camila Del Pilar Calfío, PhD, Senior Scientist
|
![]() |
Catalina Meléndez, PhD, Postdoc
|
![]() |
Barbara Rojas, PhD, Postdoc
|
![]() |
Ugnė Šimuliūnaitė, PhD program of Biochemistry
|
![]() |
Simonas Kuras, PhD program of Biology |
![]() |
Daniel Naumovas, PhD Program of Biology |
![]() |
Aistė Petruškevičiūtė, PhD program of Biochemistry |
![]() |
Regan Chen, Junior Scientist |
![]() |
Postdoc positions available in the lab, Motivated candidates |
The Arias Lab was established in 2022 under the leadership of Dr. Jonathan Arias. It is one of six inaugural research groups comprising the EMBL Partnership Institute at the Vilnius University Life Sciences Center. The Partnership is centered on developing novel genome editing technologies through in vivo and in vitro research.
Regenerative medicine - The use of human induced Pluripotent Stem (iPS) cells to create adult cell types has revolutionized our understanding of developmental biology and is prone to drive the next generation of cell-based therapeutics. It is remarkable as it can provide new therapeutic opportunities for a wide range of human diseases. Today, Genome Engineering synergizes with Regenerative Medicine allowing us to confer novel therapeutic functions to cells, yielding "smart-therapeutics". Similarly, Genome Engineering allows us to correct deleterious mutations within our genomes both in vivo and ex vivo.
To fulfill this potential, the Arias Lab engineers human iPS cells utilizing cutting-edge nucleases to create cell-based therapeutics with clinical translation potential. This approach allows us to manufacture cells ex vivo, and therefore, we can introduce therapeutic functions in a reliable manner and perform extensive quality control. Our technologies and expertise include precise genome engineering, lineage-specific differentiation and AI driven biosciences.
We are an interdisciplinary and international team glad to establish collaborations across the globe to achieve our vision. We invite you to follow us or join us as we pursue the next generation therapeutics!